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Future UV/Optical/NIR Missions Under Study

Dark Matter UV Spectroscopy :

Galaxy formation, Exo plan
Atmosphexic Study

Contrast Imaging:
Dark matter/Dark
Energy

A bit of history...

Historically, UV sensitivity was the motivation for the
development of back illuminated arrays and delta
doping.......

....and it’s still an issue...

e Current UV only detectors in missions are far from theoretical limits
Quantum efficiencies ~ 10%

Spatial resolution limited to 10 microns, spatial non-linearities
No energy resolution

— Poor dynamic range (<100:1)

* Quantum efficiency enhancement over 0.1-0.3 micron band is critical.
— Corresponds to x 3 telescope aperture improvement (e.g., HST 2.4 m -> 7 m)

Clearly, other factors have become important...
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Back-illumination as key to high performance silicon
imaging technology
Performance parameters
» Wide spectral range in one detector (e.g., UV, visible, NIR in silicon)
* High sensitivity, high fill factor
Realization of back illuminated devices
 Thinning, substrate removal

* Bandstructure engineering and end to end processing determine the
performance

Other considerations
* Detector thickness and NIR response
* Thick fully depletable materials and detectors
* Radiation tolerance (CMOS and LBNL p-channel CCDs)
* Photon counting (L3CCDs, Impactron, APDs....)
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BI device dilemma: Physics of Si/ SiO2 Interface

Si/Si0, interface charging produces spontancous “self-bias”:
* QE hysteresis: Low and unstable low quantum efficiency.
» Back illuminated silicon detectors are useless without surface passivation.

Back surface %Ping of photo

-generated charge

/
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Using MBE to solve the BI device problem

In the late 1980's, JPL scientists Paula and Frank Grunthaner performed pioneering
studies of Si/SiO2 interface and developed low temperature MBE process.

This work enabled epitaxial growth on fully fabricated (complete with metallization)
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MBE enables atomic level control over charge distribution
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Delta doping technology as the ideal BI solution

3 ° . Delta-doped layer
Bandst.ructure engineering for opt¥mum performance 0004m  (boron in single atomic layer)
Atomic layer control over device structure =

Low temperature process, compatible with VLSI, fully
fabricated devices (CCDs, CMOS, PIN arrays)
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Hoenk et al., Applied Physics Letters, 61: 1084 (1992)
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Fully-processed devices are modified using Molecular Beam Epitaxy (MBE)
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Sensitivity with Delta doping technology

Quantum Efficiency of Delta doped CCDs
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* 100% internal quantum efficiency, uniform, and stable (QY has been removed so maximum QE is 100%).
¢ Extreme UV measurements were made at SSRL

* Compatible with AR and filter coating: response can be tailored for different regions of the spectrum
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Delta-doped CCD Stability and Reproducibility
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JPL Facilities for End-to-end Post-Fabrication Process

Fully-processed arrays fabricated at
outside foundries are obtained.

Bonding: Thermocompression
bonding or post MBE bonding is
used for achieving flat, robust
membranes

g BE is used to grow a delta
-doped layer of Si on the backside of fully
- processed silicon arrays .Response of CCD

i ‘ Si imager is enhanced to the theoretical limit.

- B
Thinning: Excellent quality -
thinned CMOS and CCDs have
been demonstrated.
AR Coatings and Filters Modeling
-

Delta dopin

- capability and PECVD and sputtering
Chemical Mechanical Polishing it 2
o system for deposition of filters and AR :
(CMp) coatings

Versatile approach makes it possible to work with various imaging arrays and technologies

Characterization of Focal Plane Arrays

Tungsten and deuterium sources (indexable)

Clean system: minimum electronics circuitry inside
Tight temperature control (+1-2 degrees)

Leach controller

PC-based (control and data collection)
NIST-calibrated photodiode

Previously used for WF/PC and Cassini CCD characterization
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Multimegapixel Array Processes and Images

Unthined MPixel ’ » “Raft” of 9 thinned
1 \ s detectors

“Raft” of 9 detectors
during delta doping

Thinned, delta doped Mpixel
L EeEm— s =

v 4.’»

‘Raft” ofi9.detectors during
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Delta doped Sparse Hybrid Megapixel CMOS Imager

High performance, buttable,
high resolution UV/optical,
sparse hybrid, vertically
integrated arrays

In collaboration with Tom
Cunningham, JPL
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JPL Delta doped CCDs and CMOS Arrays
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Sample Field Observations and Independent Evaluations

Visible image

HOMER, a University of Colorado
sounding rocket experiment, used a
UV spectrograph equipped with a delta
doped CCD

A delta doped CCD was flown on a
sounding rocket experiment with Johns

UV and violet image of Hopkins University

Galaxy 6137 at Palomar

Precision photometry Ewf ™. s TN
with CCDs for Kepler § w0 | \‘w“! L7 ~ShorNoise 3
& E Tver 3
Xas pr(I)zenlbyPI;IASA 3 24; N 4:. i
r.nes, epler L group H 2 . L Sample data from HOMER
using a delta doped CCD 0

o

Tested by various groups and
incorporated in instruments
at JPL and other institutions
including NASA ARC,
Caltech, U of Michigan, SWRI,
etc
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buried
p channel

Transparent
rear window

response

P-channel High Purity CCDs and Delta doping

High purity silicon imagers
S. Holland, Lawrence Berkeley National Laboratory
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Wavelength (nm)

*The transparent electrode plays key role in: QE, dark current, spectral range, and fabrication
*Merge delta doping with high purity array technology to achieve high QE, stability, & broadband

*Allow streamlined fabrication because of the low temperature process of delta doping

_minn =

USAF Test Pattern

Delta-doped LBNL
10 megapixel CCD

Delta doped Large Format P channel CCDs

MBE Growth on P-channel High Purity
CCDs
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Collaboration with Steve
Holland, Chris Bebek, Natalie
Roe, Lawrence Berkeley
National Laboratory

Dark current ~ 1 e-/pixel/hr
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8-inch Wafer Silicon MBE

With large size wafer capacity and multiple wafer processing,
high throughput processes is enabled and delta doping a lot
run can be achieved in short period of time
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Photograph of Wafers heating inside MBE

6-inch wafer rotating inside the MBE

ingle 8-inch wafer
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Enabling Compact Instruments:
Delta doped array at focal plane of a miniature mass spec

5000-10000dn shown — 60s exposure /80amu centered

In collaboration with M. Sinha for Miniature Mass Spectrometer

Direct Detection of Low Energy
Molecular Ions with 700 eV energy!!

Iron Pentacarbonyl (196amu)
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Motivation for Low-energy Particle Detectors

Solar Enevgelic Particres

» Compact, low-power, low-mass, and highly-sensitive space plasma instruments iz
are enabled by solid-state low-energy particle detectors

* SOA: MCPs or Telescoping strip detectors:

* E.g., ACE uses a telescope of 2-D arrays for the measurements that can
be made by a single, energy-resolving, mid to high-energy particle detecto;

ACE SIS Telescope

Position Sensitive
Detector

Particle Trajectory
System

Energy
Loss
Stack

Position Sensitive Detector
M (active region:34 cm?)
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Hybrid Advanced Detector

P contact

A RN
....................... -«
. delta-doped
~~ High Resistivity Silicon layer depleted p--

high-resistivity silicon|

| indium bump \\ >
g g E— bondin, undepleted p--
¢ high-resistivity silicon MBE-grown 8-doped layer

CMOS Read Out (APS)

CMOS-APS Pixe

In collaboration with Tom Cunningham, JPL

* Direct detection of low-energy ions and electrons (eV-10 keV)
* Rapid acquisition (< 1 ms)

» 2-D array

 Simultaneous ion angular and energy characterization
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Electrical, Optical and Particle Detection

| | | | | | |
140 — -

HR Diode and Photomultiplier Response vs.
120 - Wavelength
%=350 nm, T =140 K

. 100 - - 60 (\
% 80 - % 50 +—| —— Photomultiplier (Arbitrary) ﬂ“
r)
60 - L 40 7| — HR Diode Current (pA)

[
? 30 r
“] i - M
0 ZIO 4‘0 6‘0 8‘0 1(‘]0 1;0 léllﬂ 5 10 /W H&\\yﬂﬁ ﬂ
L Y WX

200 300 400

S
s

Detected Elect/Incident Elect

e 1,00 mm

9x8 HYBRID DETECTOR

Vacuum-UV testing of
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Sensitivity to UV shows removal of the deadlayer
Full depletion demonstrated for 350 nm photons (absorption length ~ 50 A)
Sensitivity to electrons with a wide energy range demonstrated

Advanced Electron Bombarded Arrays

DQE of Solar blind UV Detectors
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Professor Chris Martin, Caltech
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Photocathode

E.
Piezoelectrically-Enhanced Photocathode (PEPC)
or Delta-doped Enhanced Photocathode (DEPC) &,
are stable with exposure to air "

p-GaN

O]

n-type
surface

High sensitivity, tailorable, and air stable are

Novel Cs-free Photocathodes
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,/(I)CD Internal Gain

3 Rises as HV Increases

Preliminary Results with CsI Photocathode

Csl
Cathode
Outline

Sum of ~100 flat field images

Accumulated events above software threshold Y /

corresponding to gain of 60-100. S5 i
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learning from silicon
III-N FPAs for Solar Blind, UV Imaging

GaN Detector Quantum Efficiency

o
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In collaboration Prof. A. Khan, U South Carolina

High QE and low leakage can be obtained using epitaxial growth
techniques including delta doping for interface engineered devices
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Hybrid, Substrate Removed, and Monolithic III-N FPAs

PhotoElectroChemical Etching (PEC)

1

Opaque
Mask
p-GaN
n-GaN
\ Sapphire
Pt Cathode
Agqueous KOH (pH w14

GaN substrate
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Unexpected spinoff:
Curved Focal Plane Arrays

Optical layout of FUSE instrument showing
curved MCPs on the Rowland circle

.h,.ﬁ- a:um [C}]

Allowing the focal plane to be curved enables improved:

Throughput

Efficiency i | /

Field of view (factor of 2) L 4

Image quality (aberration is introduced by each field flattener) I

Simplicity......... it

Yw L -
Examples: &
Rover Panoramic Camera, a CFPA removes 3-4 - U’W
elements sie V““ S
e Q

FiC mirror ® 1

* DoD and commercial applications
Curved MCPs have been used to enable missions
such as FUSE and Rosetta, however, curved solid
state detectors will have clear advantages
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Large Curved Focal Plane Arrays, Spherical Arrays, Cylindrical Arrays

Frontside circuitry

Delta layer electrode for High purity Si
full depletion, low dark \‘ﬁ

current and high QE e

VLSI
Fabricated
Pixels

N —

‘Thick Fully Depleted
Imaging Array
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Imaging Results of Thinned CFPA

UVCCD for Biological UV Signatures
Gender-dependent UV Signature of Eurema lisa Butterfly

‘and distinguish

" their gender in a visually /
Negative 0.1 psi

Delta doping technology was inve!

arrays to achieve ultrastable-100%
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Summary

Back illumination is key for achieving the highest performance in Silicon imagers
Delta doping was invented at JPL enabling stable and high QE solution for BSI silicon imagers

JPL’s BI end-to-end post fabrication processing including thinning, delta doping, AR coating,
and packaging is applied to fully fabricated CCD, CMOS, or PIN array wafers

P-type and n-type delta doping has been developed for n-channel and p-channel CCDs
Delta layers are highly conductive and can be used as an electrode for full depletion

New techniques and applications have been developed both in silicon imagers and in other
materials and devices. Spinoffs such as curved FPAs have been developed.

Delta doped arrays have been used for charged and neutral particle detection

Similar physics and bandstructure engineering is extended to other materials and devices such
as III-N devices for hybrid FPAs and photocathodes

New equipment and infrastructure has been incorporated at JPL enabling both p and n-type
delta doping at wafer level with batch processing for high throughput delta doping and quick
turn around processing of lot runs
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